TOPICS
Search

Search Results for ""


1361 - 1370 of 1564 for Monotonic SequenceSearch Results
Triskaidekaphobia is the fear of 13, a number commonly associated with bad luck in Western culture. While fear of the number 13 can be traced back to medieval times, the word ...
Vassiliev invariants, discovered around 1989, provided a radically new way of looking at knots. The notion of finite type (a.k.a. Vassiliev) knot invariants was independently ...
Zero is the integer denoted 0 that, when used as a counting number, means that no objects are present. It is the only integer (and, in fact, the only real number) that is ...
A graph G having chromatic number chi(G)<=k is called a k-colorable graph (Harary 1994, p. 127). In contrast, a graph having chi(G)=k is said to be a k-chromatic graph. Note ...
The 120-cell is a finite regular four-dimensional polytope with Schläfli symbol {5,3,3}. It is also known as the hyperdodecahedron or hecatonicosachoron, and is composed of ...
The 16-cell beta_4 is the finite regular four-dimensional cross polytope with Schläfli symbol {3,3,4}. It is also known as the hyperoctahedron (Buekenhout and Parker 1998) or ...
The 24-cell is a finite regular four-dimensional polytope with Schläfli symbol {3,4,3}. It is also known as the hyperdiamond or icositetrachoron, and is composed of 24 ...
The 600-cell is the finite regular four-dimensional polytope with Schläfli symbol {3,3,5}. It is also known as the hypericosahedron or hexacosichoron. It is composed of 600 ...
The Alexander polynomial is a knot invariant discovered in 1923 by J. W. Alexander (Alexander 1928). The Alexander polynomial remained the only known knot polynomial until ...
Apéry's numbers are defined by A_n = sum_(k=0)^(n)(n; k)^2(n+k; k)^2 (1) = sum_(k=0)^(n)([(n+k)!]^2)/((k!)^4[(n-k)!]^2) (2) = _4F_3(-n,-n,n+1,n+1;1,1,1;1), (3) where (n; k) ...
1 ... 134|135|136|137|138|139|140 ... 157 Previous Next

...