Search Results for ""
371 - 380 of 2846 for Maximum Modulus TheoremSearch Results
The multiplicity of a multigraph is its maximum edge multiplicity.
If n=1,2 (mod 4), and the squarefree part of n is divisible by a prime p=3 (mod 4), then no difference set of order n exists. Equivalently, if a projective plane of order n ...
The most general form of this theorem states that in a commutative unit ring R, the height of every proper ideal I generated by n elements is at most n. Equality is attained ...
Euler's 6n+1 theorem states that every prime of the form 6n+1, (i.e., 7, 13, 19, 31, 37, 43, 61, 67, ..., which are also the primes of the form 3n+1; OEIS A002476) can be ...
The theorem, originally conjectured by Berge (1960, 1961), that a graph is perfect iff neither the graph nor its graph complement contains an odd graph cycle of length at ...
The asymptotic form of the n-step Bernoulli distribution with parameters p and q=1-p is given by P_n(k) = (n; k)p^kq^(n-k) (1) ∼ 1/(sqrt(2pinpq))e^(-(k-np)^2/(2npq)) (2) ...
If M^3 is a closed oriented connected 3-manifold such that every simple closed curve in M lies interior to a ball in M, then M is homeomorphic with the hypersphere, S^3.
Let G(V,E) be a graph with graph vertices V and graph edges E on n graph vertices without a (k+1)-clique. Then t(n,k)<=((k-1)n^2)/(2k), where t(n,k) is the edge count. (Note ...
Let R be the class of expressions generated by 1. The rational numbers and the two real numbers pi and ln2, 2. The variable x, 3. The operations of addition, multiplication, ...
Let Gamma be a representation for a group of group order h, then sum_(R)Gamma_i(R)_(mn)Gamma_j(R)_(m^'n^')^*=h/(sqrt(l_il_j))delta_(ij)delta_(mm^')delta_(nn^'). The proof is ...
...