Search Results for ""
81 - 90 of 635 for Matrices and determinantsSearch Results
The matrix direct sum of n matrices constructs a block diagonal matrix from a set of square matrices, i.e., direct sum _(i=1)^nA_i = diag(A_1,A_2,...,A_n) (1) = [A_1 ; A_2 ; ...
Two matrices A and B are said to be equal iff a_(ij)=b_(ij) (1) for all i,j. Therefore, [1 2; 3 4]=[1 2; 3 4], (2) while [1 2; 3 4]!=[0 2; 3 4]. (3)
Proved in 1933. If q is an odd prime or q=0 and n is any positive integer, then there is a Hadamard matrix of order m=2^e(q^n+1), where e is any positive integer such that ...
If the matrices A, X, B, and C satisfy AX-XB=C, then [I X; 0 I][A C; 0 B][I -X; 0 I]=[A 0; 0 B], where I is the identity matrix.
An integer matrix whose entries satisfy a_(ij)={0 if j>i+1; -1 if j=i+1; 0 or 1 if j<=i. (1) There are 2^(n-1) special minimal matrices of size n×n.
The product C of two matrices A and B is defined as c_(ik)=a_(ij)b_(jk), (1) where j is summed over for all possible values of i and k and the notation above uses the ...
A n×n matrix A is an orthogonal matrix if AA^(T)=I, (1) where A^(T) is the transpose of A and I is the identity matrix. In particular, an orthogonal matrix is always ...
A symmetric matrix is a square matrix that satisfies A^(T)=A, (1) where A^(T) denotes the transpose, so a_(ij)=a_(ji). This also implies A^(-1)A^(T)=I, (2) where I is the ...
Let V be a real symmetric matrix of large order N having random elements v_(ij) that for i<=j are independently distributed with equal densities, equal second moments m^2, ...
An optical illusion, illustrated above, in which the eye perceives a white upright equilateral triangle where none is actually drawn.
...
View search results from all Wolfram sites (32457 matches)

