Search Results for ""
5861 - 5870 of 13135 for MathworldSearch Results
Let A and B be any sets with empty intersection, and let |X| denote the cardinal number of a set X. Then |A|+|B|=|A union B| (Ciesielski 1997, p. 68; Dauben 1990, p. 173; ...
For any sets A and B, their cardinal numbers satisfy |A|<=|B| iff there is a one-to-one function f from A into B (Rubin 1967, p. 266; Suppes 1972, pp. 94 and 116). It is easy ...
Let A and B be any sets, and let |X| be the cardinal number of a set X. Then cardinal exponentiation is defined by |A|^(|B|)=|set of all functions from B into A| (Ciesielski ...
Let g:R->R be a function and let h>0, and define the cardinal series of g with respect to the interval h as the formal series sum_(k=-infty)^inftyg(kh)sinc((x-kh)/h), where ...
Let A and B be any sets. Then the product of |A| and |B| is defined as the Cartesian product |A|*|B|=|A×B| (Ciesielski 1997, p. 68; Dauben 1990, p. 173; Moore 1982, p. 37; ...
A coordinate system (mu,nu,psi) defined by the coordinate transformation x = (munu)/((mu^2+nu^2)^2)cospsi (1) y = (munu)/((mu^2+nu^2)^2)sinpsi (2) z = ...
If f(z) is regular and of the form O(e^(k|z|)) where k<pi, for R[z]>=0, and if f(z)=0 for z=0, 1, ..., then f(z) is identically zero.
Consider a quadratic equation x^2-sx+p=0 where s and p denote signed lengths. The circle which has the points A=(0,1) and B=(s,p) as a diameter is then called the Carlyle ...
Carmichael's conjecture asserts that there are an infinite number of Carmichael numbers. This was proven by Alford et al. (1994).
Given any triangle ABC, the signed sum of perpendicular distances from the circumcenter O to the sides (i.e., signed lengths of the pedal lines from O) is OO_A+OO_B+OO_C=R+r, ...
...
View search results from all Wolfram sites (168819 matches)

