Search Results for ""
811 - 820 of 1609 for Lookand Say SequenceSearch Results

The formal term used for a collection of objects. It is denoted {a_i}_(i in I) (but other kinds of brackets can be used as well), where I is a nonempty set called the index ...
The Feller-Tornier constant is the density of integers that have an even number of prime factors p_i^(a_i) with a_1>1 in their prime factorization. It is given by ...
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product ...
Consider a Lucas sequence with P>0 and Q=+/-1. A Fibonacci pseudoprime is a composite number n such that V_n=P (mod n). There exist no even Fibonacci pseudoprimes with ...
The Fibonacci Q-matrix is the matrix defined by Q=[F_2 F_1; F_1 F_0]=[1 1; 1 0], (1) where F_n is a Fibonacci number. Then Q^n=[F_(n+1) F_n; F_n F_(n-1)] (2) (Honsberger ...
The fibonomial coefficient (sometimes also called simply the Fibonacci coefficient) is defined by [m; k]_F=(F_mF_(m-1)...F_(m-k+1))/(F_1F_2...F_k), (1) where [m; 0]_F=1 and ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
The q-series identity product_(n=1)^(infty)((1-q^(2n))(1-q^(3n))(1-q^(8n))(1-q^(12n)))/((1-q^n)(1-q^(24n))) = ...
An extension field F subset= K is called finite if the dimension of K as a vector space over F (the so-called degree of K over F) is finite. A finite field extension is ...
For any sequence of integers 0<n_1<...<n_k, there is a flag manifold of type (n_1, ..., n_k) which is the collection of ordered sets of vector subspaces of R^(n_k) (V_1, ..., ...

...