Search Results for ""
51 - 60 of 3983 for Log Gamma FunctionSearch Results
A series of the form sum_(n=0)^inftya_nJ_(nu+n)(z), (1) where nu is a real and J_(nu+n)(z) is a Bessel function of the first kind. Special cases are ...
The Lorentzian function is the singly peaked function given by L(x)=1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2), (1) where x_0 is the center and Gamma is a parameter specifying ...
The entire function phi(rho,beta;z)=sum_(k=0)^infty(z^k)/(k!Gamma(rhok+beta)), where rho>-1 and beta in C, named after the British mathematician E. M. Wright.
The confluent hypergeometric function of the second kind gives the second linearly independent solution to the confluent hypergeometric differential equation. It is also ...
(e^(ypsi_0(x))Gamma(x))/(Gamma(x+y))=product_(n=0)^infty(1+y/(n+x))e^(-y/(n+x)), where psi_0(x) is the digamma function and Gamma(x) is the gamma function.
The E_n(x) function is defined by the integral E_n(x)=int_1^infty(e^(-xt)dt)/(t^n) (1) and is given by the Wolfram Language function ExpIntegralE[n, x]. Defining t=eta^(-1) ...
sum_(k=-n)^n(-1)^k(n+b; n+k)(n+c; c+k)(b+c; b+k)=(Gamma(b+c+n+1))/(n!Gamma(b+1)Gamma(c+1)), where (n; k) is a binomial coefficient and Gamma(x) is a gamma function.
The Cunningham function, sometimes also called the Pearson-Cunningham function, can be expressed using Whittaker functions (Whittaker and Watson 1990, p. 353). ...
A method for testing nested hypotheses. To apply the procedure, given a specific model, calculate the likelihood of observing the actual data. Then compare this likelihood to ...
The Fox H-function is a very general function defined by where 0<=m<=q, 0<=n<=p, alpha_j,beta_j>0, and a_j,b_j are complex numbers such that no pole of Gamma(b_j-beta_js) for ...
...
View search results from all Wolfram sites (424754 matches)

