The Cunningham function, sometimes also called the Pearson-Cunningham function, can be expressed using Whittaker functions (Whittaker
and Watson 1990, p. 353).
where
is a confluent hypergeometric
function of the second kind (Abramowitz and Stegun 1972, p. 510).
See also Confluent Hypergeometric Function of the Second Kind ,
Whittaker
Function
Explore with Wolfram|Alpha
References Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, 1972. Whittaker, E. T. and Watson, G. N. A
Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University
Press, 1990. Referenced on Wolfram|Alpha Cunningham Function
Cite this as:
Weisstein, Eric W. "Cunningham Function."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/CunninghamFunction.html
Subject classifications