TOPICS
Search

Cunningham Function


The Cunningham function, sometimes also called the Pearson-Cunningham function, can be expressed using Whittaker functions (Whittaker and Watson 1990, p. 353).

 omega_(n,m)(x)=(e^(pii(m/2-n)+x))/(Gamma(1+n-1/2m))U(1/2m-n,1+m,x),

where U(a,b,z) is a confluent hypergeometric function of the second kind (Abramowitz and Stegun 1972, p. 510).


See also

Confluent Hypergeometric Function of the Second Kind, Whittaker Function

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

Referenced on Wolfram|Alpha

Cunningham Function

Cite this as:

Weisstein, Eric W. "Cunningham Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CunninghamFunction.html

Subject classifications