TOPICS
Search

Search Results for ""


41 - 50 of 3983 for Log Gamma FunctionSearch Results
The q-digamma function psi_q(z), also denoted psi_q^((0))(z), is defined as psi_q(z)=1/(Gamma_q(z))(partialGamma_q(z))/(partialz), (1) where Gamma_q(z) is the q-gamma ...
Define the Airy zeta function for n=2, 3, ... by Z(n)=sum_(r)1/(r^n), (1) where the sum is over the real (negative) zeros r of the Airy function Ai(z). This has the ...
The Meijer G-function is a very general function which reduces to simpler special functions in many common cases. The Meijer G-function is defined by (1) where Gamma(s) is ...
Given a hypergeometric or generalized hypergeometric function _pF_q(a_1,...,a_p;b_1,...,b_q;z), the corresponding regularized hypergeometric function is defined by where ...
A formal extension of the hypergeometric function to two variables, resulting in four kinds of functions (Appell 1925; Picard 1880ab, 1881; Goursat 1882; Whittaker and Watson ...
The function defined by (1) (Heatley 1943; Abramowitz and Stegun 1972, p. 509), where _1F_1(a;b;z) is a confluent hypergeometric function of the first kind and Gamma(z) is ...
k_nu(x)=(e^(-x))/(Gamma(1+1/2nu))U(-1/2nu,0,2x) for x>0, where U is a confluent hypergeometric function of the second kind.
The inverse function of the logarithm, defined such that log_b(antilog_bz)=z=antilog_b(log_bz). The antilogarithm in base b of z is therefore b^z.
For positive integer n, the K-function is defined by K(n) = 1^12^23^3...(n-1)^(n-1) (1) = H(n-1), (2) where the numbers H(n)=K(n+1) are called hyperfactorials by Sloane and ...
A function is said to be modular (or "elliptic modular") if it satisfies: 1. f is meromorphic in the upper half-plane H, 2. f(Atau)=f(tau) for every matrix A in the modular ...
1|2|3|4|5|6|7|8 ... 399 Previous Next

...