Search Results for ""
601 - 610 of 1766 for Linear and non-linear relationsSearch Results
A diagonal of a square matrix which is traversed in the "southeast" direction. "The" diagonal (or "main diagonal," or "principal diagonal," or "leading diagonal") of an n×n ...
If A is an n×n square matrix and lambda is an eigenvalue of A, then the union of the zero vector 0 and the set of all eigenvectors corresponding to eigenvalues lambda is ...
An n×n matrix A is an elementary matrix if it differs from the n×n identity I_n by a single elementary row or column operation.
The matrix operations of 1. Interchanging two rows or columns, 2. Adding a multiple of one row or column to another, 3. Multiplying any row or column by a nonzero element.
Two matrices A and B are equal to each other, written A=B, if they have the same dimensions m×n and the same elements a_(ij)=b_(ij) for i=1, ..., n and j=1, ..., m. ...
Let A=a_(ij) be a matrix with positive coefficients so that a_(ij)>0 for all i,j=1, 2, ..., n, then A has a positive eigenvalue lambda_0, and all its eigenvalues lie on the ...
The determinant G(f_1,f_2,...,f_n)=|intf_1^2dt intf_1f_2dt ... intf_1f_ndt; intf_2f_1dt intf_2^2dt ... intf_2f_ndt; | | ... |; intf_nf_1dt intf_nf_2dt ... intf_n^2dt|.
Given a set V of m vectors (points in R^n), the Gram matrix G is the matrix of all possible inner products of V, i.e., g_(ij)=v_i^(T)v_j. where A^(T) denotes the transpose. ...
Let f_1(x), ..., f_n(x) be real integrable functions over the closed interval [a,b], then the determinant of their integrals satisfies
Let |A| be an n×n determinant with complex (or real) elements a_(ij), then |A|!=0 if |a_(ii)|>sum_(j=1; j!=i)^n|a_(ij)|.
...
View search results from all Wolfram sites (55083 matches)

