TOPICS
Search

Hadamard's Theorem


Let |A| be an n×n determinant with complex (or real) elements a_(ij), then |A|!=0 if

 |a_(ii)|>sum_(j=1; j!=i)^n|a_(ij)|.

See also

Hadamard's Inequality

Explore with Wolfram|Alpha

References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1110, 2000.

Referenced on Wolfram|Alpha

Hadamard's Theorem

Cite this as:

Weisstein, Eric W. "Hadamard's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HadamardsTheorem.html

Subject classifications