TOPICS
Search

Search Results for ""


1891 - 1900 of 2765 for Linear Recurrence EquationSearch Results
A plane curve proposed by Descartes to challenge Fermat's extremum-finding techniques. In parametric form, x = (3at)/(1+t^3) (1) y = (3at^2)/(1+t^3). (2) The curve has a ...
Denote the nth derivative D^n and the n-fold integral D^(-n). Then D^(-1)f(t)=int_0^tf(xi)dxi. (1) Now, if the equation D^(-n)f(t)=1/((n-1)!)int_0^t(t-xi)^(n-1)f(xi)dxi (2) ...
An important result in valuation theory which gives information on finding roots of polynomials. Hensel's lemma is formally stated as follows. Let (K,|·|) be a complete ...
The hyperbolic cotangent is defined as cothz=(e^z+e^(-z))/(e^z-e^(-z))=(e^(2z)+1)/(e^(2z)-1). (1) The notation cthz is sometimes also used (Gradshteyn and Ryzhik 2000, p. ...
Given a circle C with center O and radius k, then two points P and Q are inverse with respect to C if OP·OQ=k^2. If P describes a curve C_1, then Q describes a curve C_2 ...
Kepler's folium is a folium curve explored by Kepler in 1609 (Lawrence 1972, p. 151; Gray et al. 2006, p. 85). When used without qualification, the term "folium" sometimes ...
A (general, asymmetric) lens is a lamina formed by the intersection of two offset disks of unequal radii such that the intersection is not empty, one disk does not completely ...
Minkowski space is a four-dimensional space possessing a Minkowski metric, i.e., a metric tensor having the form dtau^2=-(dx^0)^2+(dx^1)^2+(dx^2)^2+(dx^3)^2. Alternatively ...
If a points A^', B^', and C^' are marked on each side of a triangle DeltaABC, one on each side (or on a side's extension), then the three Miquel circles (each through a ...
The geodesic on an oblate spheroid can be computed analytically, although the resulting expression is much more unwieldy than for a simple sphere. A spheroid with equatorial ...
1 ... 187|188|189|190|191|192|193 ... 277 Previous Next

...