TOPICS
Search

Search Results for ""


1121 - 1130 of 2765 for Linear Recurrence EquationSearch Results
A negative definite matrix is a Hermitian matrix all of whose eigenvalues are negative. A matrix m may be tested to determine if it is negative definite in the Wolfram ...
A negative matrix is a real or integer matrix (a)_(ij) for which each matrix element is a negative number, i.e., a_(ij)<0 for all i, j. Negative matrices are therefore a ...
There are two equivalent definitions for a nilpotent matrix. 1. A square matrix whose eigenvalues are all 0. 2. A square matrix A such that A^n is the zero matrix 0 for some ...
Let A=a_(ij) be a matrix with positive coefficients and lambda_0 be the positive eigenvalue in the Frobenius theorem, then the n-1 eigenvalues lambda_j!=lambda_0 satisfy the ...
The Paley class of a positive integer m=0 (mod 4) is defined as the set of all possible quadruples (k,e,q,n) where m=2^e(q^n+1), (1) q is an odd prime, and k={0 if q=0; 1 if ...
Proved in 1933. If q is an odd prime or q=0 and n is any positive integer, then there is a Hadamard matrix of order m=2^e(q^n+1), where e is any positive integer such that ...
The eigenvalues lambda satisfying P(lambda)=0, where P(lambda) is the characteristic polynomial, lie in the unions of the disks |z|<=1 |z+b_1|<=sum_(j=1)^n|b_j|.
A square matrix A such that the matrix power A^(k+1)=A for k a positive integer is called a periodic matrix. If k is the least such integer, then the matrix is said to have ...
If all elements a_(ij) of an irreducible matrix A are nonnegative, then R=minM_lambda is an eigenvalue of A and all the eigenvalues of A lie on the disk |z|<=R, where, if ...
If mu=(mu_1,mu_2,...,mu_n) is an arbitrary set of positive numbers, then all eigenvalues lambda of the n×n matrix a=a_(ij) lie on the disk |z|<=m_mu, where ...
1 ... 110|111|112|113|114|115|116 ... 277 Previous Next

...