If is an arbitrary set of positive numbers, then all eigenvalues of the matrix lie on the disk , where
Perron's Theorem
Explore with Wolfram|Alpha
References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1121, 2000.MacCluer, C. R. "The Many Proofs and Applications of Perron's Theorem." SIAM Rev. 42, 487-498, 2000.Perron, O. "Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus." Math. Ann. 64, 11-76, 1907.Referenced on Wolfram|Alpha
Perron's TheoremCite this as:
Weisstein, Eric W. "Perron's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PerronsTheorem.html