Search Results for ""
2721 - 2730 of 3922 for Line graphsSearch Results
The heptanacci numbers are a generalization of the Fibonacci numbers defined by H_0=0, H_1=1, H_2=1, H_3=2, H_4=4, H_5=8, H_6=16, and the recurrence relation ...
The Hermite constant is defined for dimension n as the value gamma_n=(sup_(f)min_(x_i)f(x_1,x_2,...,x_n))/([discriminant(f)]^(1/n)) (1) (Le Lionnais 1983). In other words, ...
The numbers H_n=H_n(0), where H_n(x) is a Hermite polynomial, may be called Hermite numbers. For n=0, 1, ..., the first few are 1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, ... ...
A number which is simultaneously pentagonal and hexagonal. Let P_n denote the nth pentagonal number and H_m the mth hexagonal number, then a number which is both pentagonal ...
Let H_n denote the nth hexagonal number and S_m the mth square number, then a number which is both hexagonal and square satisfies the equation H_n=S_m, or n(2n-1)=m^2. (1) ...
The hexanacci numbers are a generalization of the Fibonacci numbers defined by H_0=0, H_1=1, H_2=1, H_3=2, H_4=4, H_5=8, and the recurrence relation ...
An integer n>1 is said to be highly cototient if the equation x-phi(x)=n has more solutions than the equations x-phi(x)=k for all 1<k<n, where phi is the totient function. ...
A matrix H with elements H_(ij)=(i+j-1)^(-1) (1) for i,j=1, 2, ..., n. Hilbert matrices are implemented in the Wolfram Language by HilbertMatrix[m, n]. The figure above shows ...
The Gelfond-Schneider constant is sometimes known as the Hilbert number. Flannery and Flannery (2000, p. 35) define a Hilbert number as a positive integer of the form n=4k+1 ...
A composite number defined analogously to a Smith number except that the sum of the number's digits equals the sum of the digits of its distinct prime factors (excluding 1). ...
...
View search results from all Wolfram sites (28121 matches)

