Search Results for ""
51 - 60 of 2358 for Legendre Differential EquationSearch Results
There are a number of equations known as the Riccati differential equation. The most common is z^2w^('')+[z^2-n(n+1)]w=0 (1) (Abramowitz and Stegun 1972, p. 445; Zwillinger ...
The second-order ordinary differential equation y^('')+2xy^'-2ny=0, (1) whose solutions may be written either y=Aerfc_n(x)+Berfc_n(-x), (2) where erfc_n(x) is the repeated ...
The complex second-order ordinary differential equation x^2y^('')+xy^'-(ix^2+nu^2)y=0 (1) (Abramowitz and Stegun 1972, p. 379; Zwillinger 1997, p. 123), whose solutions can ...
The ordinary differential equation z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)), where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. ...
Some authors define a general Airy differential equation as y^('')+/-k^2xy=0. (1) This equation can be solved by series solution using the expansions y = ...
(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+alpha^2y=0 (1) for |x|<1. The Chebyshev differential equation has regular singular points at -1, 1, and infty. It can be solved by series ...
A natural extension of the Riemann p-differential equation given by (d^2w)/(dx^2)+(gamma/x+delta/(x-1)+epsilon/(x-a))(dw)/(dx)+(alphabetax-q)/(x(x-1)(x-a))w=0 where ...
The most general forced form of the Duffing equation is x^..+deltax^.+(betax^3+/-omega_0^2x)=gammacos(omegat+phi). (1) Depending on the parameters chosen, the equation can ...
(d^2u)/(dz^2)+(du)/(dz)+(k/z+(1/4-m^2)/(z^2))u=0. (1) Let u=e^(-z/2)W_(k,m)(z), where W_(k,m)(z) denotes a Whittaker function. Then (1) becomes ...
A partial differential equation of second-order, i.e., one of the form Au_(xx)+2Bu_(xy)+Cu_(yy)+Du_x+Eu_y+F=0, (1) is called hyperbolic if the matrix Z=[A B; B C] (2) ...
...