TOPICS
Search

Struve Differential Equation


The ordinary differential equation

 z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)),

where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. 496; Zwillinger 1997, p. 127). The solution is

 y=aJ_nu(z)+bY_nu(z)+H_nu(z),

where J_nu(z) and Y_nu(z) are Bessel functions of the first and second kinds, and H_nu(z) is a Struve function (Abramowitz and Stegun 1972).


See also

Bessel Function of the First Kind, Bessel Function of the Second Kind, Struve Function

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 496, 1972.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 127, 1997.

Referenced on Wolfram|Alpha

Struve Differential Equation

Cite this as:

Weisstein, Eric W. "Struve Differential Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StruveDifferentialEquation.html

Subject classifications