Search Results for ""
1871 - 1880 of 2358 for Legendre Differential EquationSearch Results
![](/common/images/search/spacer.gif)
A (2n)×(2n) complex matrix A in C^(2n×2n) is said to be Hamiltonian if J_nA=(J_nA)^(H), (1) where J_n in R^(2n×2n) is the matrix of the form J_n=[0 I_n; I_n 0], (2) I_n is ...
A number which is simultaneously a heptagonal number Hep_n and hexagonal number Hex_m. Such numbers exist when 1/2n(5n-3)=m(2m-1). (1) Completing the square and rearranging ...
A number which is simultaneously a heptagonal number H_n and pentagonal number P_m. Such numbers exist when 1/2n(5n-3)=1/2m(3m-1). (1) Completing the square and rearranging ...
The Jacobian of the derivatives partialf/partialx_1, partialf/partialx_2, ..., partialf/partialx_n of a function f(x_1,x_2,...,x_n) with respect to x_1, x_2, ..., x_n is ...
An integer n>1 is said to be highly cototient if the equation x-phi(x)=n has more solutions than the equations x-phi(x)=k for all 1<k<n, where phi is the totient function. ...
For any two nonzero p-adic numbers a and b, the Hilbert symbol is defined as (a,b)={1 if z^2=ax^2+by^2 has a nonzero solution; -1 otherwise. (1) If the p-adic field is not ...
Let ad=bc, then Hirschhorn's 3-7-5 identity, inspired by the Ramanujan 6-10-8 identity, is given by (1) Another version of this identity can be given using linear forms. Let ...
For a nonzero real number r and a triangle DeltaABC, swing line segment BC about the vertex B towards vertex A through an angle rB. Call the line along the rotated segment L. ...
Homogeneous coordinates (x_1,x_2,x_3) of a finite point (x,y) in the plane are any three numbers for which (x_1)/(x_3)=x (1) (x_2)/(x_3)=y. (2) Coordinates (x_1,x_2,0) for ...
A generalization of the Fibonacci numbers defined by the four constants (p,q,r,s) and the definitions H_0=p and H_1=q together with the linear recurrence equation ...
![](/common/images/search/spacer.gif)
...