Search Results for ""
861 - 870 of 3574 for Inverse FunctionsSearch Results
Let f be an entire function of finite order lambda and {a_j} the zeros of f, listed with multiplicity, then the rank p of f is defined as the least positive integer such that ...
A complex line bundle is a vector bundle pi:E->M whose fibers pi^(-1)(m) are a copy of C. pi is a holomorphic line bundle if it is a holomorphic map between complex manifolds ...
A real-valued univariate function f=f(x) has a jump discontinuity at a point x_0 in its domain provided that lim_(x->x_0-)f(x)=L_1<infty (1) and lim_(x->x_0+)f(x)=L_2<infty ...
The Lebesgue integral is defined in terms of upper and lower bounds using the Lebesgue measure of a set. It uses a Lebesgue sum S_n=sum_(i)eta_imu(E_i) where eta_i is the ...
Let mu(sigma) be the least upper bound of the numbers A such that |zeta(sigma+it)|t^(-A) is bounded as t->infty, where zeta(s) is the Riemann zeta function. Then the Lindelöf ...
Let a>|b|, and write h(theta)=(acostheta+b)/(2sintheta). (1) Then define P_n(x;a,b) by the generating function f(x,w)=f(costheta,w)=sum_(n=0)^inftyP_n(x;a,b)w^n ...
A Saunders graphic is a plot of the dth base-b digits of a function f(x,y) as a function of x and y. The plots above show Saunders graphics for the functions ...
The ordinary differential equation z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)), where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. ...
The superfactorial of n is defined by Pickover (1995) as n$=n!^(n!^(·^(·^(·^(n!)))))_()_(n!). (1) The first two values are 1 and 4, but subsequently grow so rapidly that 3$ ...
An apodization function A(x)=1, (1) having instrument function I(k)=2asinc(2pika). (2) The peak of I(k) is 2a. The full width at half maximum of I(k) can found by setting ...
...
View search results from all Wolfram sites (501482 matches)

