Search Results for ""
491 - 500 of 3574 for Inverse FunctionsSearch Results
An apodization function chosen to minimize the height of the highest sidelobe (Hamming and Tukey 1949, Blackman and Tukey 1959). The Hamming function is given by ...
A q-analog of the gamma function defined by Gamma_q(x)=((q;q)_infty)/((q^x;q)_infty)(1-q)^(1-x), (1) where (x,q)_infty is a q-Pochhammer symbol (Koepf 1998, p. 26; Koekoek ...
The Siegel theta function is a Gamma_n-invariant meromorphic function on the space of all p×p symmetric complex matrices Z=X+iY with positive definite imaginary part. It is ...
A number t_x=tan^(-1)(1/x)=cot^(-1)x, where x is an integer or rational number, tan^(-1)x is the inverse tangent, and cot^(-1)x is the inverse cotangent. Gregory numbers ...
A series of the form sum_(n=0)^inftya_nJ_(nu+n)(z), (1) where nu is a real and J_(nu+n)(z) is a Bessel function of the first kind. Special cases are ...
Let J_nu(z) be a Bessel function of the first kind, Y_nu(z) a Bessel function of the second kind, and K_nu(z) a modified Bessel function of the first kind. Also let R[z]>0 ...
The term "Euler function" may be used to refer to any of several functions in number theory and the theory of special functions, including 1. the totient function phi(n), ...
As defined by Erdélyi et al. (1981, p. 20), the G-function is given by G(z)=psi_0(1/2+1/2z)-psi_0(1/2z), (1) where psi_0(z) is the digamma function. Integral representations ...
The Lorentzian function is the singly peaked function given by L(x)=1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2), (1) where x_0 is the center and Gamma is a parameter specifying ...
The ramp function is defined by R(x) = xH(x) (1) = int_(-infty)^xH(x^')dx^' (2) = int_(-infty)^inftyH(x^')H(x-x^')dx^' (3) = H(x)*H(x), (4) where H(x) is the Heaviside step ...
...
View search results from all Wolfram sites (501482 matches)

