Search Results for ""
2181 - 2190 of 3574 for Inverse FunctionsSearch Results
A normal distribution with mean 0, P(x)=h/(sqrt(pi))e^(-h^2x^2). (1) The characteristic function is phi(t)=e^(-t^2/(4h^2)). (2) The mean, variance, skewness, and kurtosis ...
The Euclidean metric is the function d:R^n×R^n->R that assigns to any two vectors in Euclidean n-space x=(x_1,...,x_n) and y=(y_1,...,y_n) the number ...
Due to Euler's prolific output, there are a great number of theorems that are know by the name "Euler's theorem." A sampling of these are Euler's displacement theorem for ...
The Evans conic is the conic section passing through the Fermat points X and X^', the inner and outer Napoleon points N and N^', and the isodynamic points S and S^' of a ...
Consider a function f(x) in one dimension. If f(x) has a relative extremum at x_0, then either f^'(x_0)=0 or f is not differentiable at x_0. Either the first or second ...
If P(x,y) and P(x^',y^') are two points on an ellipse (x^2)/(a^2)+(y^2)/(b^2)=1, (1) with eccentric angles phi and phi^' such that tanphitanphi^'=b/a (2) and A=P(a,0) and ...
The term faltung is variously used to mean convolution and a function of bilinear forms. Let A and B be bilinear forms A = A(x,y)=sumsuma_(ij)x_iy_i (1) B = ...
Let T_n(x) be an arbitrary trigonometric polynomial T_n(x)=1/2a_0+{sum_(k=1)^n[a_kcos(kx)+b_ksin(kx)]} (1) with real coefficients, let f be a function that is integrable over ...
The Fermat axis is the central line connecting the first and second Fermat points. It has line function l=a(b^2-c^2)(a^2-b^2-bc-c^2)(a^2-b^2+bc-c^2), corresponding to ...
In 1657, Fermat posed the problem of finding solutions to sigma(x^3)=y^2, and solutions to sigma(x^2)=y^3, where sigma(n) is the divisor function (Dickson 2005). The first ...
...
View search results from all Wolfram sites (501482 matches)

