TOPICS
Search

Evans Conic


EvansConic

The Evans conic is the conic section passing through the Fermat points X and X^', the inner and outer Napoleon points N and N^', and the isodynamic points S and S^' of a triangle. It has trilinear equation

 a^2alpha^2(-3S^2+S_A^2)(-S^2+3S_A^2)(S_B-S_C)^2+2bcbetagamma(S_A-S_B)(-S_A+S_C)[3a^4S_A^2+(a^2S_A+S_BS_C)(S_B^2-6S_BS_C+SS_C^2)]+[cyclic trilinears],

where S, S_A, S_B, and S_C is Conway triangle notation (P. Moses, pers. comm., Jan. 12, 2005).

The center of the Evans conic has center function

 alpha_(3054)=(12Delta)/a-acotomega,

where Delta is the area of the reference triangle and omega is the Brocard angle (P. Moses, pers. comm., Jan. 12, 2005), which is Kimberling center X_(3054).

The Evans conic passes through Kimberling centers X_i for i=13 (first Fermat point), 14 (second Fermat point), 15 (first isodynamic point), 16 (second isodynamic point), 17 (first Napoleon point), 18 (second Napoleon point), 590, and 615.


See also

Conic Section

Explore with Wolfram|Alpha

References

Evans, L. S. "A Conic Through Six Triangle Centers." Forum Geom. 2, 89-92, 2002. http://forumgeom.fau.edu/FG2002volume2/FG200211index.html.

Referenced on Wolfram|Alpha

Evans Conic

Cite this as:

Weisstein, Eric W. "Evans Conic." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EvansConic.html

Subject classifications