Search Results for ""
1841 - 1850 of 1997 for Infinite SequenceSearch Results
A graph G having chromatic number chi(G)<=k is called a k-colorable graph (Harary 1994, p. 127). In contrast, a graph having chi(G)=k is said to be a k-chromatic graph. Note ...
The 120-cell is a finite regular four-dimensional polytope with Schläfli symbol {5,3,3}. It is also known as the hyperdodecahedron or hecatonicosachoron, and is composed of ...
The 16-cell beta_4 is the finite regular four-dimensional cross polytope with Schläfli symbol {3,3,4}. It is also known as the hyperoctahedron (Buekenhout and Parker 1998) or ...
The 24-cell is a finite regular four-dimensional polytope with Schläfli symbol {3,4,3}. It is also known as the hyperdiamond or icositetrachoron, and is composed of 24 ...
The 600-cell is the finite regular four-dimensional polytope with Schläfli symbol {3,3,5}. It is also known as the hypericosahedron or hexacosichoron. It is composed of 600 ...
The Alexander polynomial is a knot invariant discovered in 1923 by J. W. Alexander (Alexander 1928). The Alexander polynomial remained the only known knot polynomial until ...
Apéry's numbers are defined by A_n = sum_(k=0)^(n)(n; k)^2(n+k; k)^2 (1) = sum_(k=0)^(n)([(n+k)!]^2)/((k!)^4[(n-k)!]^2) (2) = _4F_3(-n,-n,n+1,n+1;1,1,1;1), (3) where (n; k) ...
Apéry's constant is defined by zeta(3)=1.2020569..., (1) (OEIS A002117) where zeta(z) is the Riemann zeta function. B. Haible and T. Papanikolaou computed zeta(3) to 1000000 ...
Archimedes' cattle problem, also called the bovinum problema, or Archimedes' reverse, is stated as follows: "The sun god had a herd of cattle consisting of bulls and cows, ...
Solutions to the associated Laguerre differential equation with nu!=0 and k an integer are called associated Laguerre polynomials L_n^k(x) (Arfken 1985, p. 726) or, in older ...
...