Search Results for ""
1301 - 1310 of 3564 for Incomplete Beta FunctionSearch Results

Solid partitions are generalizations of plane partitions. MacMahon (1960) conjectured the generating function for the number of solid partitions was ...
Consider the sample standard deviation s=sqrt(1/Nsum_(i=1)^N(x_i-x^_)^2) (1) for n samples taken from a population with a normal distribution. The distribution of s is then ...
The superfactorial of n is defined by Pickover (1995) as n$=n!^(n!^(·^(·^(·^(n!)))))_()_(n!). (1) The first two values are 1 and 4, but subsequently grow so rapidly that 3$ ...
A lattice polygon formed by a three-choice walk. The anisotropic perimeter and area generating function G(x,y,q)=sum_(m>=1)sum_(n>=1)sum_(a>=a)C(m,n,a)x^my^nq^a, where ...
Given a positive nondecreasing sequence 0<lambda_1<=lambda_2<=..., the zeta-regularized product is defined by product_(n=1)^^^inftylambda_n=exp(-zeta_lambda^'(0)), where ...
Special cases of general formulas due to Bessel. J_0(sqrt(z^2-y^2))=1/piint_0^pie^(ycostheta)cos(zsintheta)dtheta, where J_0(z) is a Bessel function of the first kind. Now, ...
Let H_nu^((iota))(x) be a Hankel function of the first or second kind, let x,nu>0, and define w=sqrt((x/nu)^2-1). Then ...
For r and x real, with 0<=arg(sqrt(k^2-tau^2))<pi and 0<=argk<pi, 1/2iint_(-infty)^inftyH_0^((1))(rsqrt(k^2-tau^2))e^(itaux)dtau=(e^(iksqrt(r^2+x^2)))/(sqrt(r^2+x^2)), where ...
The Gaussian integral, also called the probability integral and closely related to the erf function, is the integral of the one-dimensional Gaussian function over ...
The geometric distribution is a discrete distribution for n=0, 1, 2, ... having probability density function P(n) = p(1-p)^n (1) = pq^n, (2) where 0<p<1, q=1-p, and ...

...