Search Results for ""
1 - 10 of 3564 for Incomplete Beta FunctionSearch Results
![](/common/images/search/spacer.gif)
A generalization of the complete beta function defined by B(z;a,b)=int_0^zu^(a-1)(1-u)^(b-1)du, (1) sometimes also denoted B_z(a,b). The so-called Chebyshev integral is given ...
A financial measure of a fund's sensitivity to market movements which measures the relationship between a fund's excess return over Treasury Bills and the excess return of a ...
The beta function B(p,q) is the name used by Legendre and Whittaker and Watson (1990) for the beta integral (also called the Eulerian integral of the first kind). It is ...
The regularized beta function is defined by I(z;a,b)=(B(z;a,b))/(B(a,b)), where B(z;a,b) is the incomplete beta function and B(a,b) is the (complete) beta function. The ...
The "complete" gamma function Gamma(a) can be generalized to the incomplete gamma function Gamma(a,x) such that Gamma(a)=Gamma(a,0). This "upper" incomplete gamma function is ...
A q-analog of the beta function B(a,b) = int_0^1t^(a-1)(1-t)^(b-1)dt (1) = (Gamma(a)Gamma(b))/(Gamma(a+b)), (2) where Gamma(z) is a gamma function, is given by B_q(a,b) = ...
Another "beta function" defined in terms of an integral is the "exponential" beta function, given by beta_n(z) = int_(-1)^1t^ne^(-zt)dt (1) = ...
The Dirichlet beta function is defined by the sum beta(x) = sum_(n=0)^(infty)(-1)^n(2n+1)^(-x) (1) = 2^(-x)Phi(-1,x,1/2), (2) where Phi(z,s,a) is the Lerch transcendent. The ...
The central beta function is defined by beta(p)=B(p,p), (1) where B(p,q) is the beta function. It satisfies the identities beta(p) = 2^(1-2p)B(p,1/2) (2) = ...
A function is a relation that uniquely associates members of one set with members of another set. More formally, a function from A to B is an object f such that every a in A ...
![](/common/images/search/spacer.gif)
...