TOPICS
Search

Search Results for ""


1581 - 1590 of 3325 for Hypergeometric FunctionSearch Results
If f(x) is an even function, then b_n=0 and the Fourier series collapses to f(x)=1/2a_0+sum_(n=1)^inftya_ncos(nx), (1) where a_0 = 1/piint_(-pi)^pif(x)dx (2) = ...
A binomial coefficient (N; k) with k>=2 is called good if its least prime factor satisfies lpf(N; k)>k (Erdős et al. 1993). This is equivalent to the requirement that GCD((N; ...
Let t(m) denote the set of the phi(m) numbers less than and relatively prime to m, where phi(n) is the totient function. Then if S_m=sum_(t(m))1/t, (1) then {S_m=0 (mod m^2) ...
Let n be a positive number having primitive roots. If g is a primitive root of n, then the numbers 1, g, g^2, ..., g^(phi(n)-1) form a reduced residue system modulo n, where ...
If a function f has a pole at z_0, then the negative power part sum_(j=-k)^(-1)a_j(z-z_0)^j (1) of the Laurent series of f about z_0 sum_(j=-k)^inftya_j(z-z_0)^j (2) is ...
Let P(1/x) be a linear functional acting according to the formula <P(1/x),phi> = Pint(phi(x))/xdx (1) = ...
If a sequence has the property that the block growth function B(n)=n+1 for all n, then it is said to have minimal block growth, and the sequence is called a Sturmian ...
The W-transform of a function f(x) is defined by the integral where Gamma[(beta_m)+s, 1-(alpha_n)-s; (alpha_p^(n+1))+s, 1-(beta_q^(m+1))-s] =Gamma[beta_1+s, ..., beta_m+s, ...
The double factorial of a positive integer n is a generalization of the usual factorial n! defined by n!!={n·(n-2)...5·3·1 n>0 odd; n·(n-2)...6·4·2 n>0 even; 1 n=-1,0. (1) ...
The reciprocal of the arithmetic-geometric mean of 1 and sqrt(2), G = 2/piint_0^11/(sqrt(1-x^4))dx (1) = 2/piint_0^(pi/2)(dtheta)/(sqrt(1+sin^2theta)) (2) = L/pi (3) = ...
1 ... 156|157|158|159|160|161|162 ... 333 Previous Next

...