TOPICS
Search

Sokhotsky's Formula


Let P(1/x) be a linear functional acting according to the formula

<P(1/x),phi>=Pint(phi(x))/xdx
(1)
=lim_(epsilon->0^+)(int_(-infty)^(-epsilon)+int_epsilon^infty)(phi(x))/xdx,
(2)

where phi in D and D is the space of test functions. Then Sokhotsky's formula states that

 lim_(epsilon->0)1/(x+/-iepsilon)=∓ipidelta(x)+P(1/x),
(3)

where delta(x) is the delta function (Vladimirov 1971, pp. 75-76).


See also

Delta Function

Explore with Wolfram|Alpha

References

Vladimirov, V. S. Equations of Mathematical Physics. New York: Dekker, 1971.

Referenced on Wolfram|Alpha

Sokhotsky's Formula

Cite this as:

Weisstein, Eric W. "Sokhotsky's Formula." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SokhotskysFormula.html

Subject classifications