TOPICS
Search

Search Results for ""


331 - 340 of 2377 for Goedels Incompleteness TheoremSearch Results
Euler's 6n+1 theorem states that every prime of the form 6n+1, (i.e., 7, 13, 19, 31, 37, 43, 61, 67, ..., which are also the primes of the form 3n+1; OEIS A002476) can be ...
The theorem, originally conjectured by Berge (1960, 1961), that a graph is perfect iff neither the graph nor its graph complement contains an odd graph cycle of length at ...
The asymptotic form of the n-step Bernoulli distribution with parameters p and q=1-p is given by P_n(k) = (n; k)p^kq^(n-k) (1) ∼ 1/(sqrt(2pinpq))e^(-(k-np)^2/(2npq)) (2) ...
Specifying three sides uniquely determines a triangle whose area is given by Heron's formula, K=sqrt(s(s-a)(s-b)(s-c)), (1) where s=1/2(a+b+c) (2) is the semiperimeter of the ...
The point of coincidence of P and P^' in Fagnano's theorem.
Specifying three angles A, B, and C does not uniquely define a triangle, but any two triangles with the same angles are similar. Specifying two angles of a triangle ...
Specifying two angles A and B and a side a opposite A uniquely determines a triangle with area K = (a^2sinBsinC)/(2sinA) (1) = (a^2sinBsin(pi-A-B))/(2sinA). (2) The third ...
Specifying two adjacent angles A and B and the side between them c uniquely (up to geometric congruence) determines a triangle with area K=(c^2)/(2(cotA+cotB)). (1) The angle ...
Specifying two sides and the angle between them uniquely (up to geometric congruence) determines a triangle. Let c be the base length and h be the height. Then the area is ...
The identity _2F_1(x,-x;x+n+1;-1)=(Gamma(x+n+1)Gamma(1/2n+1))/(Gamma(x+1/2n+1)Gamma(n+1)), or equivalently ...
1 ... 31|32|33|34|35|36|37 ... 238 Previous Next

...