TOPICS
Search

Search Results for ""


31 - 40 of 1556 for Fourier Cosine SeriesSearch Results
A Fourier series-like expansion of a twice continuously differentiable function f(x)=1/2a_0+sum_(n=1)^inftya_nJ_0(nx) (1) for 0<x<pi, where J_0(x) is a zeroth order Bessel ...
The Fourier transform of the Heaviside step function H(x) is given by F_x[H(x)](k) = int_(-infty)^inftye^(-2piikx)H(x)dx (1) = 1/2[delta(k)-i/(pik)], (2) where delta(k) is ...
The Fourier transform of a Gaussian function f(x)=e^(-ax^2) is given by F_x[e^(-ax^2)](k) = int_(-infty)^inftye^(-ax^2)e^(-2piikx)dx (1) = ...
There are several q-analogs of the cosine function. The two natural definitions of the q-cosine defined by Koekoek and Swarttouw (1998) are given by cos_q(z) = ...
Let R(x) be the ramp function, then the Fourier transform of R(x) is given by F_x[R(x)](k) = int_(-infty)^inftye^(-2piikx)R(x)dx (1) = i/(4pi)delta^'(k)-1/(4pi^2k^2), (2) ...
The most common form of cosine integral is Ci(x) = -int_x^infty(costdt)/t (1) = gamma+lnx+int_0^x(cost-1)/tdt (2) = 1/2[Ei(ix)+Ei(-ix)] (3) = -1/2[E_1(ix)+E_1(-ix)], (4) ...
The inverse cosine is the multivalued function cos^(-1)z (Zwillinger 1995, p. 465), also denoted arccosz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
The Fourier transform of the generalized function 1/x is given by F_x(-PV1/(pix))(k) = -1/piPVint_(-infty)^infty(e^(-2piikx))/xdx (1) = ...
The hyperbolic cosine is defined as coshz=1/2(e^z+e^(-z)). (1) The notation chx is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). This function describes the ...
The inverse hyperbolic cosine cosh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosine (Harris and Stocker 1998, p. 264) is the ...
1|2|3|4|5|6|7 ... 156 Previous Next

...