Search Results for ""
421 - 430 of 3164 for FUNCTIONSSearch Results
The polynomials G_n(x;a,b) given by the associated Sheffer sequence with f(t)=e^(at)(e^(bt)-1), (1) where b!=0. The inverse function (and therefore generating function) ...
A Lyapunov function is a scalar function V(y) defined on a region D that is continuous, positive definite, V(y)>0 for all y!=0), and has continuous first-order partial ...
The vertical line test is a graphical method of determining whether a curve in the plane represents the graph of a function by visually examining the number of intersections ...
H_n^((2))(z)=J_n(z)-iY_n(z), (1) where J_n(z) is a Bessel function of the first kind and Y_n(z) is a Bessel function of the second kind. Hankel functions of the second kind ...
nu(x) = int_0^infty(x^tdt)/(Gamma(t+1)) (1) nu(x,alpha) = int_0^infty(x^(alpha+t)dt)/(Gamma(alpha+t+1)), (2) where Gamma(z) is the gamma function (Erdélyi et al. 1981, p. ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
The prime zeta function P(s)=sum_(p)1/(p^s), (1) where the sum is taken over primes is a generalization of the Riemann zeta function zeta(s)=sum_(k=1)^infty1/(k^s), (2) where ...
The inverse hyperbolic cosine cosh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosine (Harris and Stocker 1998, p. 264) is the ...
Let E_1(x) be the En-function with n=1, E_1(x) = int_1^infty(e^(-tx)dt)/t (1) = int_x^infty(e^(-u)du)/u. (2) Then define the exponential integral Ei(x) by E_1(x)=-Ei(-x), (3) ...
There are several functions called "Lommel functions." One type of Lommel function appear in the solution to the Lommel differential equation and are given by ...
...
View search results from all Wolfram sites (498428 matches)

