TOPICS
Search

Search Results for ""


971 - 980 of 2127 for Evaluation of formulas, expressions, and...Search Results
cos(pi/(15)) = 1/8(sqrt(30+6sqrt(5))+sqrt(5)-1) (1) cos((2pi)/(15)) = 1/8(sqrt(30-6sqrt(5))+sqrt(5)+1) (2) cos((4pi)/(15)) = 1/8(sqrt(30+6sqrt(5))-sqrt(5)+1) (3) ...
cos(pi/(16)) = 1/2sqrt(2+sqrt(2+sqrt(2))) (1) cos((3pi)/(16)) = 1/2sqrt(2+sqrt(2-sqrt(2))) (2) cos((5pi)/(16)) = 1/2sqrt(2-sqrt(2-sqrt(2))) (3) cos((7pi)/(16)) = ...
Values of the trigonometric functions can be expressed exactly for integer multiples of pi/20. For cosx, cos(pi/(20)) = 1/4sqrt(8+2sqrt(10+2sqrt(5))) (1) cos((3pi)/(20)) = ...
Bürmann's theorem deals with the expansion of functions in powers of another function. Let phi(z) be a function of z which is analytic in a closed region S, of which a is an ...
The hyperbolic cosecant is defined as cschz=1/(sinhz)=2/(e^z-e^(-z)). (1) It is implemented in the Wolfram Language as Csch[z]. It is related to the hyperbolic cotangent ...
The hyperbolic cotangent is defined as cothz=(e^z+e^(-z))/(e^z-e^(-z))=(e^(2z)+1)/(e^(2z)-1). (1) The notation cthz is sometimes also used (Gradshteyn and Ryzhik 2000, p. ...
The hyperbolic secant is defined as sechz = 1/(coshz) (1) = 2/(e^z+e^(-z)), (2) where coshz is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z]. On ...
The computation of points or values between ones that are known or tabulated using the surrounding points or values. In particular, given a univariate function f=f(x), ...
Let a, b, and c be the lengths of the legs of a triangle opposite angles A, B, and C. Then the law of cosines states a^2 = b^2+c^2-2bccosA (1) b^2 = a^2+c^2-2accosB (2) c^2 = ...
A sequent is an expression Gamma|-Lambda, where Gamma and Lambda are (possibly empty) sequences of formulas. Here, Gamma is called the antecedent and Lambda is called the ...
1 ... 95|96|97|98|99|100|101 ... 213 Previous Next

...