Search Results for ""
61 - 70 of 1145 for Euler AnglesSearch Results

cos(pi/(12)) = 1/4(sqrt(6)+sqrt(2)) (1) cos((5pi)/(12)) = 1/4(sqrt(6)-sqrt(2)) (2) cot(pi/(12)) = 2+sqrt(3) (3) cot((5pi)/(12)) = 2-sqrt(3) (4) csc(pi/(12)) = sqrt(6)+sqrt(2) ...
Construction of the angle pi/4=45 degrees produces an isosceles right triangle. Since the sides are equal, sin^2theta+cos^2theta=2sin^2theta=1, (1) so solving for ...
cos(pi/(15)) = 1/8(sqrt(30+6sqrt(5))+sqrt(5)-1) (1) cos((2pi)/(15)) = 1/8(sqrt(30-6sqrt(5))+sqrt(5)+1) (2) cos((4pi)/(15)) = 1/8(sqrt(30+6sqrt(5))-sqrt(5)+1) (3) ...
Construction of the angle pi/3=60 degrees produces a 30-60-90 triangle, which has angles theta=pi/3 and theta/2=pi/6. From the above diagram, write y=sintheta for the ...
Construction of the angle pi/6=30 degrees produces a 30-60-90 triangle, which has angles theta=pi/6 and 2theta=pi/3. From the above diagram, write y=sintheta for the vertical ...
The general displacement of a rigid body (or coordinate frame) with one point fixed is a rotation about some axis. Furthermore, a rotation may be described in any basis using ...
cos(pi/(10)) = 1/4sqrt(10+2sqrt(5)) (1) cos((3pi)/(10)) = 1/4sqrt(10-2sqrt(5)) (2) cot(pi/(10)) = sqrt(5+2sqrt(5)) (3) cot((3pi)/(10)) = sqrt(5-2sqrt(5)) (4) csc(pi/(10)) = ...
cos(pi/(16)) = 1/2sqrt(2+sqrt(2+sqrt(2))) (1) cos((3pi)/(16)) = 1/2sqrt(2+sqrt(2-sqrt(2))) (2) cos((5pi)/(16)) = 1/2sqrt(2-sqrt(2-sqrt(2))) (3) cos((7pi)/(16)) = ...
The exact values of cos(pi/18) and sin(pi/18) can be given by infinite nested radicals sin(pi/(18))=1/2sqrt(2-sqrt(2+sqrt(2+sqrt(2-...)))), where the sequence of signs +, +, ...
Values of the trigonometric functions can be expressed exactly for integer multiples of pi/20. For cosx, cos(pi/(20)) = 1/4sqrt(8+2sqrt(10+2sqrt(5))) (1) cos((3pi)/(20)) = ...

...