Search Results for ""
1481 - 1490 of 3390 for Entire FunctionSearch Results

In accounting, the principal is the original amount borrowed or lent on which interest is then paid or given. The word "principal" is also used in many areas of mathematics ...
When a measure lambda is absolutely continuous with respect to a positive measure mu, then it can be written as lambda(E)=int_Efdmu. By analogy with the first fundamental ...
int_(-infty)^infty(J_(mu+xi)(x))/(x^(mu+xi))(J_(nu-xi)(y))/(y^(nu-xi))e^(itxi)dxi =[(2cos(1/2t))/(x^2e^(-it/2)+y^2e^(it/2))]^((mu+nu)/2) ...
The rectifiable sets include the image of any Lipschitz function f from planar domains into R^3. The full set is obtained by allowing arbitrary measurable subsets of ...
Let z_0 be a point in a simply connected region R!=C, where C is the complex plane. Then there is a unique analytic function w=f(z) mapping R one-to-one onto the disk |w|<1 ...
For K a given knot in S^3, choose a Seifert surface M^2 in S^3 for K and a bicollar M^^×[-1,1] in S^3-K. If x in H_1(M^^) is represented by a 1-cycle in M^^, let x^+ denote ...
A fractional integral of order 1/2. The semi-integral of t^lambda is given by D^(-1/2)t^lambda=(t^(lambda+1/2)Gamma(lambda+1))/(Gamma(lambda+3/2)), so the semi-integral of ...
A fractional derivative of order 1/2. The semiderivative of t^lambda is given by D^(1/2)t^lambda=(t^(lambda-1/2)Gamma(lambda+1))/(Gamma(lambda+1/2)), so the semiderivative of ...
A seminorm is a function on a vector space V, denoted ||v||, such that the following conditions hold for all v and w in V, and any scalar c. 1. ||v||>=0, 2. ||cv||=|c|||v||, ...
The sum of the absolute squares of the spherical harmonics Y_l^m(theta,phi) over all values of m is sum_(m=-l)^l|Y_l^m(theta,phi)|^2=(2l+1)/(4pi). (1) The double sum over m ...

...