TOPICS
Search

Seifert Form


For K a given knot in S^3, choose a Seifert surface M^2 in S^3 for K and a bicollar M^^×[-1,1] in S^3-K. If x in H_1(M^^) is represented by a 1-cycle in M^^, let x^+ denote the homology cycle carried by x×1 in the bicollar. Similarly, let x^- denote x×-1. The function f:H_1(M^^)×H_1(M^^)->Z defined by

 f(x,y)=lk(x,y^+),

where lk denotes the linking number, is called a Seifert form for K.


See also

Seifert Matrix

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 200-201, 1976.

Referenced on Wolfram|Alpha

Seifert Form

Cite this as:

Weisstein, Eric W. "Seifert Form." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SeifertForm.html

Subject classifications