Search Results for ""
501 - 510 of 1485 for Elliptic integralSearch Results
The computation of a derivative.
Any pair of equations giving the real part of a function as an integral of its imaginary part and the imaginary part as an integral of its real part. Dispersion relationships ...
A function which arises in the fractional integral of e^(at), given by E_t(nu,a) = (e^(at))/(Gamma(nu))int_0^tx^(nu-1)e^(-ax)dx (1) = (a^(-nu)e^(at)gamma(nu,at))/(Gamma(nu)), ...
Let f(theta) be Lebesgue integrable and let f(r,theta)=1/(2pi)int_(-pi)^pif(t)(1-r^2)/(1-2rcos(t-theta)+r^2)dt (1) be the corresponding Poisson integral. Then almost ...
The ring of fractions of an integral domain. The field of fractions of the ring of integers Z is the rational field Q, and the field of fractions of the polynomial ring ...
The Fourier transform of the constant function f(x)=1 is given by F_x[1](k) = int_(-infty)^inftye^(-2piikx)dx (1) = delta(k), (2) according to the definition of the delta ...
F_x[cos(2pik_0x)](k) = int_(-infty)^inftye^(-2piikx)((e^(2piik_0x)+e^(-2piik_0x))/2)dx (1) = 1/2int_(-infty)^infty[e^(-2pii(k-k_0)x)+e^(-2pii(k+k_0)x)]dx (2) = ...
The Fourier transform of the delta function is given by F_x[delta(x-x_0)](k) = int_(-infty)^inftydelta(x-x_0)e^(-2piikx)dx (1) = e^(-2piikx_0). (2)
The Fourier transform of the Heaviside step function H(x) is given by F_x[H(x)](k) = int_(-infty)^inftye^(-2piikx)H(x)dx (1) = 1/2[delta(k)-i/(pik)], (2) where delta(k) is ...
The Fourier transform of the generalized function 1/x is given by F_x(-PV1/(pix))(k) = -1/piPVint_(-infty)^infty(e^(-2piikx))/xdx (1) = ...
...