Search Results for ""
411 - 420 of 1485 for Elliptic integralSearch Results
int_a^b(del f)·ds=f(b)-f(a), where del is the gradient, and the integral is a line integral. It is this relationship which makes the definition of a scalar potential function ...
A function for which the integral can be computed is said to be integrable.
The quantity being integrated, also called the integral kernel. For example, in intf(x)dx, f(x) is the integrand.
The Laplace transform is an integral transform perhaps second only to the Fourier transform in its utility in solving physical problems. The Laplace transform is particularly ...
A composition of a function f degreesf with itself gives a nested function f(f(x)), f degreesf degreesf which gives f(f(f(x)), etc. Function nesting is implemented in the ...
Integrals of the form intf(costheta,sintheta)dtheta (1) can be solved by making the substitution z=e^(itheta) so that dz=ie^(itheta)dtheta and expressing costheta = ...
The following integral transform relationship, known as the Abel transform, exists between two functions f(x) and g(t) for 0<alpha<1, f(x) = int_0^x(g(t)dt)/((x-t)^alpha) (1) ...
The Bessel differential equation is the linear second-order ordinary differential equation given by x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0. (1) Equivalently, dividing ...
The Hartley Transform is an integral transform which shares some features with the Fourier transform, but which, in the most common convention, multiplies the integral kernel ...
The Laplace-Carson transform F of a real-valued function f is an integral transform defined by the formula F(p)=pint_0^inftye^(-pt)f(t)dt. (1) In most cases, the function F ...
...