TOPICS
Search

Search Results for ""


21 - 30 of 1485 for Elliptic integralSearch Results
A cone with elliptical cross section. The parametric equations for an elliptic cone of height h, semimajor axis a, and semiminor axis b are x = a(h-u)/hcosv (1) y = ...
The Carlson elliptic integrals, also known as the Carlson symmetric forms, are a standard set of canonical elliptic integrals which provide a convenient alternative to ...
The elliptic exponential function eexp_(a,b)(u) gives the value of x in the elliptic logarithm eln_(a,b)(x)=1/2int_infty^x(dt)/(sqrt(t^3+at^2+bt)) for a and b real such that ...
Elliptic rational functions R_n(xi,x) are a special class of rational functions that have nice properties for approximating other functions over the interval x in [-1,1]. In ...
The elliptic lambda function lambda(tau) is a lambda-modular function defined on the upper half-plane by lambda(tau)=(theta_2^4(0,q))/(theta_3^4(0,q)), (1) where tau is the ...
A surface of revolution which is generalization of the ring torus. It is produced by rotating an ellipse having horizontal semi-axis a, vertical semi-axis b, embedded in the ...
The Weierstrass elliptic functions (or Weierstrass P-functions, voiced "p-functions") are elliptic functions which, unlike the Jacobi elliptic functions, have a second-order ...
The Jacobi elliptic functions are standard forms of elliptic functions. The three basic functions are denoted cn(u,k), dn(u,k), and sn(u,k), where k is known as the elliptic ...
An Abelian integral, are also called a hyperelliptic integral, is an integral of the form int_0^x(dt)/(sqrt(R(t))), where R(t) is a polynomial of degree >4.
Let E be an elliptic curve defined over the field of rationals Q(sqrt(-d)) having equation y^2=x^3+ax+b with a and b integers. Let P be a point on E with integer coordinates ...
1|2|3|4|5|6 ... 149 Previous Next

...