Search Results for ""
831 - 840 of 1736 for Elliptic Integralofthe Second KindSearch Results
![](/common/images/search/spacer.gif)
A quadratic map is a quadratic recurrence equation of the form x_(n+1)=a_2x_n^2+a_1x_n+a_0. (1) While some quadratic maps are solvable in closed form (for example, the three ...
A recursive primality certificate for a prime p. The certificate consists of a list of 1. A point on an elliptic curve C y^2=x^3+g_2x+g_3 (mod p) for some numbers g_2 and ...
Solving the nome q for the parameter m gives m(q) = (theta_2^4(q))/(theta_3^4(q)) (1) = (16eta^8(1/2tau)eta^(16)(2tau))/(eta^(24)(tau)), (2) where theta_i(q)=theta_i(0,q) is ...
A function is said to be modular (or "elliptic modular") if it satisfies: 1. f is meromorphic in the upper half-plane H, 2. f(Atau)=f(tau) for every matrix A in the modular ...
A cubic symmetric graph is a symmetric cubic (i.e., regular of order 3). Such graphs were first studied by Foster (1932). They have since been the subject of much interest ...
The Feigenbaum constant delta is a universal constant for functions approaching chaos via period doubling. It was discovered by Feigenbaum in 1975 (Feigenbaum 1979) while ...
Pascal's triangle is a number triangle with numbers arranged in staggered rows such that a_(nr)=(n!)/(r!(n-r)!)=(n; r), (1) where (n; r) is a binomial coefficient. The ...
The Sierpiński sieve is a fractal described by Sierpiński in 1915 and appearing in Italian art from the 13th century (Wolfram 2002, p. 43). It is also called the Sierpiński ...
The Hermite polynomials H_n(x) are set of orthogonal polynomials over the domain (-infty,infty) with weighting function e^(-x^2), illustrated above for n=1, 2, 3, and 4. ...
Spherical coordinates, also called spherical polar coordinates (Walton 1967, Arfken 1985), are a system of curvilinear coordinates that are natural for describing positions ...
![](/common/images/search/spacer.gif)
...