Search Results for ""
51 - 60 of 1736 for Elliptic Integralofthe Second KindSearch Results
![](/common/images/search/spacer.gif)
The Bessel functions of the first kind J_n(x) are defined as the solutions to the Bessel differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0 (1) which are ...
A second countable space is a topological space whose topology is second countable.
The spherical Bessel function of the first kind, denoted j_nu(z), is defined by j_nu(z)=sqrt(pi/(2z))J_(nu+1/2)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
A Sierpiński number of the first kind is a number of the form S_n=n^n+1. The first few are 2, 5, 28, 257, 3126, 46657, 823544, 16777217, ... (OEIS A014566). Sierpiński proved ...
A subset E of a topological space S is said to be of second category in S if E cannot be written as the countable union of subsets which are nowhere dense in S, i.e., if ...
The confluent hypergeometric function of the first kind _1F_1(a;b;z) is a degenerate form of the hypergeometric function _2F_1(a,b;c;z) which arises as a solution the ...
The second singular value k_2, corresponding to K^'(k_2)=sqrt(2)K(k_2), (1) is given by k_2 = tan(pi/8) (2) = sqrt(2)-1 (3) k_2^' = sqrt(2)(sqrt(2)-1). (4) For this modulus, ...
The first singular value k_1 of the elliptic integral of the first kind K(k), corresponding to K^'(k_1)=K(k_1), (1) is given by k_1 = 1/(sqrt(2)) (2) k_1^' = 1/(sqrt(2)). (3) ...
Any of the three standard forms in which an elliptic integral can be expressed.
A topological space is second countable if it has a countable topological basis.
![](/common/images/search/spacer.gif)
...