The first singular value of the elliptic integral of the first kind , corresponding to
(1)
|
is given by
(2)
| |||
(3)
|
The value is given by
(4)
|
which can be transformed to
(5)
|
Let
(6)
| |||
(7)
| |||
(8)
| |||
(9)
|
then
(10)
| |||
(11)
| |||
(12)
|
where is the beta function and is the gamma function. Now use
(13)
|
and
(14)
|
so
(15)
|
Therefore,
(16)
|
Now consider
(17)
|
Let
(18)
| |||
(19)
| |||
(20)
| |||
(21)
|
so
(22)
| |||
(23)
| |||
(24)
|
Now note that
(25)
|
so
(26)
| |||
(27)
| |||
(28)
|
Now let
(29)
| |||
(30)
|
so
(31)
| |||
(32)
| |||
(33)
|
But
(34)
| |||
(35)
| |||
(36)
|
so
(37)
|
(38)
| |||
(39)
| |||
(40)
| |||
(41)
|
Summarizing (◇) and (41) gives
(42)
| |||
(43)
| |||
(44)
| |||
(45)
|