The first singular value of the elliptic
integral of the first kind
, corresponding to
|
(1)
|
is given by
|
(2)
| |||
|
(3)
|
The value is given by
|
(4)
|
which can be transformed to
|
(5)
|
Let
|
(6)
| |||
|
(7)
| |||
|
(8)
| |||
|
(9)
|
then
|
(10)
| |||
|
(11)
| |||
|
(12)
|
where
is the beta function and
is the gamma function.
Now use
|
(13)
|
and
|
(14)
|
so
|
(15)
|
Therefore,
|
(16)
|
Now consider
|
(17)
|
Let
|
(18)
| |||
|
(19)
| |||
|
(20)
| |||
|
(21)
|
so
|
(22)
| |||
|
(23)
| |||
|
(24)
|
Now note that
|
(25)
|
so
|
(26)
| |||
|
(27)
| |||
|
(28)
|
Now let
|
(29)
| |||
|
(30)
|
so
|
(31)
| |||
|
(32)
| |||
|
(33)
|
But
|
(34)
| |||
|
(35)
| |||
|
(36)
|
so
|
(37)
|
|
(38)
| |||
|
(39)
| |||
|
(40)
| |||
|
(41)
|
Summarizing (◇) and (41) gives
|
(42)
| |||
|
(43)
| |||
|
(44)
| |||
|
(45)
|