Search Results for ""
131 - 140 of 1736 for Elliptic Integralofthe Second KindSearch Results
![](/common/images/search/spacer.gif)
S_n(z) = zj_n(z)=sqrt((piz)/2)J_(n+1/2)(z) (1) C_n(z) = -zn_n(z)=-sqrt((piz)/2)N_(n+1/2)(z), (2) where j_n(z) and n_n(z) are spherical Bessel functions of the first and ...
An integral equation of the form f(x)=int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved for.
delta(r)=sqrt(r)-2alpha(r), where alpha(r) is the elliptic alpha function.
The elliptic exponential function eexp_(a,b)(u) gives the value of x in the elliptic logarithm eln_(a,b)(x)=1/2int_infty^x(dt)/(sqrt(t^3+at^2+bt)) for a and b real such that ...
A Bessel function Z_n(x) is a function defined by the recurrence relations Z_(n+1)+Z_(n-1)=(2n)/xZ_n (1) and Z_(n+1)-Z_(n-1)=-2(dZ_n)/(dx). (2) The Bessel functions are more ...
The Abel equation of the first kind is given by y^'=f_0(x)+f_1(x)y+f_2(x)y^2+f_3(x)y^3+... (Murphy 1960, p. 23; Zwillinger 1997, p. 120), and the Abel equation of the second ...
Let n be an elliptic pseudoprime associated with (E,P), and let n+1=2^sk with k odd and s>=0. Then n is a strong elliptic pseudoprime when either kP=0 (mod n) or 2^rkP=0 (mod ...
Let E(k) and K(k) be complete elliptic integrals of the first and second kinds, with E^'(k) and K^'(k) the complementary integrals. Then ...
Krall and Fink (1949) defined the Bessel polynomials as the function y_n(x) = sum_(k=0)^(n)((n+k)!)/((n-k)!k!)(x/2)^k (1) = sqrt(2/(pix))e^(1/x)K_(-n-1/2)(1/x), (2) where ...
E(a,b)/p denotes the elliptic group modulo p whose elements are 1 and infty together with the pairs of integers (x,y) with 0<=x,y<p satisfying y^2=x^3+ax+b (mod p) (1) with a ...
![](/common/images/search/spacer.gif)
...