Search Results for ""
1011 - 1020 of 2406 for Elliptic Curve Group LawSearch Results
![](/common/images/search/spacer.gif)
In the equianharmonic case of the Weierstrass elliptic function, corresponding to invariants g_2=0 and g_3=1, the corresponding real half-period is given by omega_2 = ...
The case of the Weierstrass elliptic function with invariants g_2=-1 and g_3=0. The half-periods for this case are L(1+i)/4 and L(-1+i)/4, where L is the lemniscate constant ...
Jacobi's imaginary transformations relate elliptic functions to other elliptic functions of the same type but having different arguments. In the case of the Jacobi elliptic ...
As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 9 positive cubes (g(3)=9), that every "sufficiently large" ...
Solving the nome q for the parameter m gives m(q) = (theta_2^4(q))/(theta_3^4(q)) (1) = (16eta^8(1/2tau)eta^(16)(2tau))/(eta^(24)(tau)), (2) where theta_i(q)=theta_i(0,q) is ...
The modular equation of degree n gives an algebraic connection of the form (K^'(l))/(K(l))=n(K^'(k))/(K(k)) (1) between the transcendental complete elliptic integrals of the ...
A symmetry of a knot K is a homeomorphism of R^3 which maps K onto itself. More succinctly, a knot symmetry is a homeomorphism of the pair of spaces (R^3,K). Hoste et al. ...
Let a spherical triangle be drawn on the surface of a sphere of radius R, centered at a point O=(0,0,0), with vertices A, B, and C. The vectors from the center of the sphere ...
Apéry's numbers are defined by A_n = sum_(k=0)^(n)(n; k)^2(n+k; k)^2 (1) = sum_(k=0)^(n)([(n+k)!]^2)/((k!)^4[(n-k)!]^2) (2) = _4F_3(-n,-n,n+1,n+1;1,1,1;1), (3) where (n; k) ...
A "curve" (i.e., a continuous map of a one-dimensional interval) into a two-dimensional area (a plane-filling function) or a three-dimensional volume.
![](/common/images/search/spacer.gif)
...