TOPICS
Search

Search Results for ""


121 - 130 of 1453 for Distance FormulaSearch Results
A^n+B^n=sum_(j=0)^(|_n/2_|)(-1)^jn/(n-j)(n-j; j)(AB)^j(A+B)^(n-2j), where |_x_| is the floor function and (n; k) is a binomial coefficient.
For a curve with first fundamental form ds^2=Edu^2+2Fdudv+Gdv^2, (1) the Gaussian curvature is K=(M_1-M_2)/((EG-F^2)^2), (2) where M_1 = |-1/2E_(vv)+F_(uv)-1/2G_(uu) 1/2E_u ...
Let {p_n(x)} be orthogonal polynomials associated with the distribution dalpha(x) on the interval [a,b]. Also let rho=c(x-x_1)(x-x_2)...(x-x_l) (for c!=0) be a polynomial of ...
For R[a+b-c-d]<-1 and a and b not integers,
The infinite product identity Gamma(1+v)=2^(2v)product_(m=1)^infty[pi^(-1/2)Gamma(1/2+2^(-m)v)], where Gamma(x) is the gamma function.
The integral representation of ln[Gamma(z)] by lnGamma(z) = int_1^zpsi_0(z^')dz^' (1) = int_0^infty[(z-1)-(1-e^(-(z-1)t))/(1-e^(-t))](e^(-t))/tdt, (2) where lnGamma(z) is the ...
(e^(ypsi_0(x))Gamma(x))/(Gamma(x+y))=product_(n=0)^infty(1+y/(n+x))e^(-y/(n+x)), where psi_0(x) is the digamma function and Gamma(x) is the gamma function.
sum_(k=0)^(infty)[((m)_k)/(k!)]^3 = 1+(m/1)^3+[(m(m+1))/(1·2)]^3+... (1) = (Gamma(1-3/2m))/([Gamma(1-1/2m)]^3)cos(1/2mpi), (2) where (m)_k is a Pochhammer symbol and Gamma(z) ...
A^*(x)=sum_(lambda_n<=x)^'a_n=1/(2pii)int_(c-iinfty)^(c+iinfty)f(s)(e^(sx))/sds, where f(s)=suma_ne^(-lambda_ns).
The solution u(x,y)=int_0^xdxiint_1^yR(xi,eta;x,y)f(xi,eta)deta, where R(x,y;xieta) is the Riemann function of the linear Goursat problem with characteristics phi=psi=0 ...
1 ... 10|11|12|13|14|15|16 ... 146 Previous Next

...