Search Results for ""
12131 - 12140 of 13135 for Discrete DistributionSearch Results
A geometry in which Euclid's fifth postulate holds, sometimes also called parabolic geometry. Two-dimensional Euclidean geometry is called plane geometry, and ...
The Euler-Lagrange differential equation is the fundamental equation of calculus of variations. It states that if J is defined by an integral of the form J=intf(t,y,y^.)dt, ...
The Euler-Maclaurin integration and sums formulas can be derived from Darboux's formula by substituting the Bernoulli polynomial B_n(t) in for the function phi(t). ...
A beautiful approximation to the Euler-Mascheroni constant gamma is given by pi/(2e)=0.57786367... (1) (OEIS A086056; E. W. Weisstein, Apr. 18, 2006), which is good to three ...
The simple continued fraction of the Euler-Mascheroni constant gamma is [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] (OEIS A002852). The first few ...
An Euler brick is a cuboid that possesses integer edges a>b>c and face diagonals d_(ab) = sqrt(a^2+b^2) (1) d_(ac) = sqrt(a^2+c^2) (2) d_(bc) = sqrt(b^2+c^2). (3) If the ...
For s>1, the Riemann zeta function is given by zeta(s) = sum_(n=1)^(infty)1/(n^s) (1) = product_(k=1)^(infty)1/(1-1/(p_k^s)), (2) where p_k is the kth prime. This is Euler's ...
There are (at least) three types of Euler transforms (or transformations). The first is a set of transformations of hypergeometric functions, called Euler's hypergeometric ...
Euler conjectured that at least n nth powers are required for n>2 to provide a sum that is itself an nth power. The conjecture was disproved by Lander and Parkin (1967) with ...
A differential evolution method used to minimize functions of real variables. Evolution strategies are significantly faster at numerical optimization than traditional genetic ...
...
View search results from all Wolfram sites (24565 matches)

