Search Results for ""
851 - 860 of 1612 for Dirac equationSearch Results

The sequence defined by e_0=2 and the quadratic recurrence equation e_n=1+product_(i=0)^(n-1)e_i=e_(n-1)^2-e_(n-1)+1. (1) This sequence arises in Euclid's proof that there ...
The Whittaker functions arise as solutions to the Whittaker differential equation. The linearly independent solutions to this equation are M_(k,m)(z) = ...
The Feigenbaum constant delta is a universal constant for functions approaching chaos via period doubling. It was discovered by Feigenbaum in 1975 (Feigenbaum 1979) while ...
A sphere is defined as the set of all points in three-dimensional Euclidean space R^3 that are located at a distance r (the "radius") from a given point (the "center"). Twice ...
A generalized hypergeometric function _pF_q(a_1,...,a_p;b_1,...,b_q;x) is a function which can be defined in the form of a hypergeometric series, i.e., a series for which the ...
The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone. For a plane perpendicular to the axis of the cone, ...
A hyperbola (plural "hyperbolas"; Gray 1997, p. 45) is a conic section defined as the locus of all points P in the plane the difference of whose distances r_1=F_1P and ...
A parabola (plural "parabolas"; Gray 1997, p. 45) is the set of all points in the plane equidistant from a given line L (the conic section directrix) and a given point F not ...
Apéry's numbers are defined by A_n = sum_(k=0)^(n)(n; k)^2(n+k; k)^2 (1) = sum_(k=0)^(n)([(n+k)!]^2)/((k!)^4[(n-k)!]^2) (2) = _4F_3(-n,-n,n+1,n+1;1,1,1;1), (3) where (n; k) ...
Archimedes' cattle problem, also called the bovinum problema, or Archimedes' reverse, is stated as follows: "The sun god had a herd of cattle consisting of bulls and cows, ...

...