Search Results for ""
121 - 130 of 2936 for Diophantine Equation 3rd PowersSearch Results
![](/common/images/search/spacer.gif)
The Bessel differential equation is the linear second-order ordinary differential equation given by x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0. (1) Equivalently, dividing ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
The third-order ordinary differential equation 2y^(''')+yy^('')=0. This equation arises in the theory of fluid boundary layers, and must be solved numerically (Rosenhead ...
The Laguerre differential equation is given by xy^('')+(1-x)y^'+lambday=0. (1) Equation (1) is a special case of the more general associated Laguerre differential equation, ...
The second-order ordinary differential equation y^('')+[A+Bcos(2x)+Ccos(4x)]y=0.
(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+alpha^2y=0 (1) for |x|<1. The Chebyshev differential equation has regular singular points at -1, 1, and infty. It can be solved by series ...
There are a number of equations known as the Riccati differential equation. The most common is z^2w^('')+[z^2-n(n+1)]w=0 (1) (Abramowitz and Stegun 1972, p. 445; Zwillinger ...
Some authors define a general Airy differential equation as y^('')+/-k^2xy=0. (1) This equation can be solved by series solution using the expansions y = ...
In spherical coordinates, the scale factors are h_r=1, h_theta=rsinphi, h_phi=r, and the separation functions are f_1(r)=r^2, f_2(theta)=1, f_3(phi)=sinphi, giving a Stäckel ...
Let L(x) denote the Rogers L-function defined in terms of the usual dilogarithm by L(x) = 6/(pi^2)[Li_2(x)+1/2lnxln(1-x)] (1) = ...
![](/common/images/search/spacer.gif)
...