Search Results for ""
221 - 230 of 3632 for Diophantine Equation 2nd PowersSearch Results
![](/common/images/search/spacer.gif)
The second-order ordinary differential equation y^('')+2xy^'-2ny=0, (1) whose solutions may be written either y=Aerfc_n(x)+Berfc_n(-x), (2) where erfc_n(x) is the repeated ...
The complex second-order ordinary differential equation x^2y^('')+xy^'-(ix^2+nu^2)y=0 (1) (Abramowitz and Stegun 1972, p. 379; Zwillinger 1997, p. 123), whose solutions can ...
The ordinary differential equation z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)), where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. ...
A second-order ordinary differential equation d/(dx)[p(x)(dy)/(dx)]+[lambdaw(x)-q(x)]y=0, where lambda is a constant and w(x) is a known function called either the density or ...
(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+alpha^2y=0 (1) for |x|<1. The Chebyshev differential equation has regular singular points at -1, 1, and infty. It can be solved by series ...
The Hénon-Heiles equation is a nonlinear nonintegrable Hamiltonian system with x^.. = -(partialV)/(partialx) (1) y^.. = -(partialV)/(partialy), (2) where the potential energy ...
A natural extension of the Riemann p-differential equation given by (d^2w)/(dx^2)+(gamma/x+delta/(x-1)+epsilon/(x-a))(dw)/(dx)+(alphabetax-q)/(x(x-1)(x-a))w=0 where ...
A number taken to the power 3 is said to be cubed, so x^3 is called "x cubed." This terminology derives from the fact that the volume of a cube of edge length x is given by ...
A number taken to the power 2 is said to be squared, so x^2 is called "x squared." This terminology derives from the fact that the area of a square of edge length x is given ...
In cylindrical coordinates, the scale factors are h_r=1, h_theta=r, h_z=1, so the Laplacian is given by del ...
![](/common/images/search/spacer.gif)
...