Search Results for ""
171 - 180 of 3632 for Diophantine Equation 2nd PowersSearch Results
![](/common/images/search/spacer.gif)
y=x(dy)/(dx)+f((dy)/(dx)) (1) or y=px+f(p), (2) where f is a function of one variable and p=dy/dx. The general solution is y=cx+f(c). (3) The singular solution envelopes are ...
A linear congruence equation ax=b (mod m) (1) is solvable iff the congruence b=0 (mod d) (2) with d=GCD(a,m) is the greatest common divisor is solvable. Let one solution to ...
The ordinary Onsager equation is the sixth-order ordinary differential equation (d^3)/(dx^3)[e^x(d^2)/(dx^2)(e^x(dy)/(dx))]=f(x) (Vicelli 1983; Zwillinger 1997, p. 128), ...
y^('')-mu(1-1/3y^('2))y^'+y=0, where mu>0. Differentiating and setting y=y^' gives the van der Pol equation. The equation y^('')-mu(1-y^('2))y^'+y=0 with the 1/3 replaced by ...
The differential equation where alpha+alpha^'+beta+beta^'+gamma+gamma^'=1, first obtained in the form by Papperitz (1885; Barnes 1908). Solutions are Riemann P-series ...
The equation of motion for a membrane shaped as a right isosceles triangle of length c on a side and with the sides oriented along the positive x and y axes is given by where ...
An exponent is the power p in an expression of the form a^p. The process of performing the operation of raising a base to a given power is known as exponentiation.
The conjecture made by Belgian mathematician Eugène Charles Catalan in 1844 that 8 and 9 (2^3 and 3^2) are the only consecutive powers (excluding 0 and 1). In other words, ...
The Bessel differential equation is the linear second-order ordinary differential equation given by x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0. (1) Equivalently, dividing ...
Cauchy's functional equation is the equation f(x+y)=f(x)+f(y). It was proved by Cauchy in 1821 that the only continuous solutions of this functional equation from R into R ...
![](/common/images/search/spacer.gif)
...