Search Results for ""
9371 - 9380 of 13135 for Coordinate GeometrySearch Results
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A meet-endomorphism of L is a meet-homomorphism from L to L.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. Then the mapping h is a meet-homomorphism if h(x ^ y)=h(x) ^ h(y). It is also said that "h preserves meets."
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and onto, then it is a meet-isomorphism provided that it preserves meets.
The integral transform defined by g(x)=int_1^inftyt^(1/4-nu/2)(t-1)^(1/4-nu/2)P_(-1/2+ix)^(nu-1/2)(2t-1)f(t)dt (Samko et al. 1993, p. 761) or ...
For x>0, J_0(x) = 2/piint_0^inftysin(xcosht)dt (1) Y_0(x) = -2/piint_0^inftycos(xcosht)dt, (2) where J_0(x) is a zeroth order Bessel function of the first kind and Y_0(x) is ...
(1) where H_n(x) is a Hermite polynomial (Watson 1933; Erdélyi 1938; Szegö 1975, p. 380). The generating function ...
A modification of Legendre's formula for the prime counting function pi(x). It starts with |_x_| = (1) where |_x_| is the floor function, P_2(x,a) is the number of integers ...
Polynomials m_k(x;beta,c) which form the Sheffer sequence for g(t) = ((1-c)/(1-ce^t))^beta (1) f(t) = (1-e^t)/(c^(-1)-e^t) (2) and have generating function ...
A variable x is memoryless with respect to t if, for all s with t!=0, P(x>s+t|x>t)=P(x>s). (1) Equivalently, (P(x>s+t,x>t))/(P(x>t)) = P(x>s) (2) P(x>s+t) = P(x>s)P(x>t). (3) ...
Let G be a graph with A and B two disjoint n-tuples of graph vertices. Then either G contains n pairwise disjoint AB-paths, each connecting a point of A and a point of B, or ...
...