TOPICS
Search

Search Results for ""


8541 - 8550 of 13135 for Coordinate GeometrySearch Results
A fibered category F over a topological space X consists of 1. a category F(U) for each open subset U subset= X, 2. a functor i^*:F(U)->F(V) for each inclusion i:V↪U, and 3. ...
Let F and G be fibered categories over a topological space X. A morphism phi:F->G of fibered categories consists of: 1. a functor phi(U):F->G(U) for each open subset U ...
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product ...
Let psi = 1+phi (1) = 1/2(3+sqrt(5)) (2) = 2.618033... (3) (OEIS A104457), where phi is the golden ratio, and alpha = lnphi (4) = 0.4812118 (5) (OEIS A002390). Define the ...
Consider a Lucas sequence with P>0 and Q=+/-1. A Fibonacci pseudoprime is a composite number n such that V_n=P (mod n). There exist no even Fibonacci pseudoprimes with ...
The Fibonacci Q-matrix is the matrix defined by Q=[F_2 F_1; F_1 F_0]=[1 1; 1 0], (1) where F_n is a Fibonacci number. Then Q^n=[F_(n+1) F_n; F_n F_(n-1)] (2) (Honsberger ...
The fibonomial coefficient (sometimes also called simply the Fibonacci coefficient) is defined by [m; k]_F=(F_mF_(m-1)...F_(m-k+1))/(F_1F_2...F_k), (1) where [m; 0]_F=1 and ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
The eigenvector corresponding to the second smallest eigenvalue (i.e., the algebraic connectivity) of the Laplacian matrix of a graph G. The Fiedler vector is used in ...
A field automorphism of a field F is a bijective map sigma:F->F that preserves all of F's algebraic properties, more precisely, it is an isomorphism. For example, complex ...
1 ... 852|853|854|855|856|857|858 ... 1314 Previous Next

...