Search Results for ""
7641 - 7650 of 13135 for Coordinate GeometrySearch Results
An element of an adèle group, sometimes called a repartition in older literature (e.g., Chevalley 1951, p. 25). Adèles arise in both number fields and function fields. The ...
The adjacency list representation of a graph consists of n lists one for each vertex v_i, 1<=i<=n, which gives the vertices to which v_i is adjacent. The adjacency lists of a ...
The word adjoint has a number of related meanings. In linear algebra, it refers to the conjugate transpose and is most commonly denoted A^(H). The analogous concept applied ...
A Lie algebra is a vector space g with a Lie bracket [X,Y], satisfying the Jacobi identity. Hence any element X gives a linear transformation given by ad(X)(Y)=[X,Y], (1) ...
Let f(z) be a transcendental meromorphic function, and let D_1, D_2, ..., D_5 be five simply connected domains in C with disjoint closures (Ahlfors 1932). Then there exists j ...
Ahmed's integral is the definite integral int_0^1(tan^(-1)(sqrt(x^2+2)))/(sqrt(x^2+2)(x^2+1))dx=5/(96)pi^2 (OEIS A096615; Ahmed 2002; Borwein et al. 2004, pp. 17-20). This is ...
Fok (1946) and Hazewinkel (1988, p. 65) call v(z) = 1/2sqrt(pi)Ai(z) (1) w_1(z) = 2e^(ipi/6)v(omegaz) (2) w_2(z) = 2e^(-ipi/6)v(omega^(-1)z), (3) where Ai(z) is an Airy ...
Ai(z) and Ai^'(z) have zeros on the negative real axis only. Bi(z) and Bi^'(z) have zeros on the negative real axis and in the sector pi/3<|argz|<pi/2. The nth (real) roots ...
Define the Airy zeta function for n=2, 3, ... by Z(n)=sum_(r)1/(r^n), (1) where the sum is over the real (negative) zeros r of the Airy function Ai(z). This has the ...
An algorithm similar to Neville's algorithm for constructing the Lagrange interpolating polynomial. Let f(x|x_0,x_1,...,x_k) be the unique polynomial of kth polynomial order ...
...